A Research Synthesis Estimating the Overall Quantitative Impact of Educational Assessment on Medical Student Learning

Clarence D. Kreiter

Visiting Professor IRCME University of Tokyo – Univ. of Iowa

Dr. Takuya Saiki – Gifu University

Context

- Medical Schools Allocate Many Resources to Assessment
- Medical Education Research Places a Strong Emphasis on R and D of Testing
- Medical Education Journals and Conferences continue to focus on Testing and Assessment topics – AAMC / RIME – Ottawa Conference

Context (con't)

- Educational reform efforts often use assessments as a tool for reform, however
- Strong criticism of many types of testing
- Currently benefits taken on faith need evidence-based justification to address criticism

Research Questions

• Are educational assessments an effective learning tool in medical education?

• Is research on educational assessment likely to promote educational efficiency?

How to Estimate?

- RCT Split class into random halves remove all assessment influences on one half – compare experimental and control
- Not doable for ethical and practical reasons
- Another approach?

Mechanism of Impact

- Review of the literature identifies 3 main ways that assessment is hypothesized to impact medical education (next slides define)
 - Direct Effect
 - Indirect Effect
 - Selection Effect

Direct Effect

- Reflects learning that occurs as part of test's intrinsic influence on long-term retention
- Hypothesized to have mnemonic effects
- Retrieval
- Mostly unrealized potential

Indirect Effect

- Associated with summative course and licensure testing
- Operates extrinsically on learning by motivating learners and instructors
- Enables accountability mechanism
- Partly realized potential?

Selection Effect

- Gains observed by using aptitude tests to select those most likely to excel in medical education
- Mostly realized potential

Using Estimates in the Literature

• Meta-analytic approach to summarize effects of each testing effect on learning

• Effect size - standardized, scale-invariant measure to summarize and integrate studies

Effect Size – Language of Meta-Analysis

Cohen's d

 $\mathbf{d} = (Mean_1 - Mean_2) / SD_{Pooled}$

• Correlation changing r to d

 $d = 2 r / \sqrt{(1 - r^2)}$

Literature Search

- Key words poorly defined so three methods:
 - 1. Traditional ERIC Medline PsychInfo.....
 - 2. Ancestry approach
 - 3. Reverse ancestry approach (Google Scholar[©])

Study Inclusion Criteria

- Conducted in-vivo
- Conducted in medical education
- When M.E. evidence limited studies of collegelevel learners included
- Quantitative estimates of learning gains that can be translated into effect size (d)

Estimates in Literature

• Combine mean test effects to derive total potential learning effect

•
$$TE^* = (\mathbf{d}_{Direct}) + (\mathbf{d}_{Indirect}) + (\mathbf{d}_{Selection})$$

*TE = Total Effect

Evidence Direct Effect

Three Studies in Medical Education (d = .91,.93,.40)

- Larsen, D.P., Butler, A.C., Roediger, H.L. III. Repeated testing improves long-term retention relative to repeated study: a randomized controlled trial. *Medical Education*, 2009; 43:1174-1181.
- Kronmann, C.B., Jensen, M.L., Ringsted, C. The effect of testing on skills learning. *Medical Education*, 2009; 43:21-27.
- Kronmann, C.B., Bohnstedt, C. Jensen, M.L., Ringsted, C. The testing effect on skill learning might last 6 months. *Adv. Heal. Sci. Ed. Theory and Prac.*, 2010; 15(3):395-401.

• Many Studies in Psych and Education

- Most laboratory-type learning task
- 5 using undergrads and educationally relevant task (d = 2.4 (3.08), .83 (.58), .43, .50, -.13 (.39))
- Mean Effect Size = \mathbf{d} = .94.

Direct Effect						
d = .94						
Study	Context	Effect Size				
Larson, Butler, Roediger [4]	-Medical Residents -Written Course Knowledge Test	d = .91, p < .01				
Kromann, Jensen, Ringsted [5]	-Medical Students -Skills – Resuscitation	d = .93, p < .01				
Kromann, Bohnstedt, Jensen, Ringsted [6]	-Medical Students -Skill – Resuscitation -6 months post	d = .40, p = .06 (NS)				
Glover [7]	-College Undergraduates -Written Knowledge Test -Two studies	d = 2.47, p < .01 d = 3.08, p < .01				
Roediger & Karpicke [8]	-College Undergraduates -Written Knowledge Test -Two studies	d = .83, p < .01 d = .58, p < .01				
McDaniel et al. [9]	-College Undergraduates -Written Course Knowledge Test	d = .43, p < .05				
McDaniel & Fisher [10]	-College Undergraduates -Written Factual Knowledge Test	d = .50, p < .01				
Kang et al. [11]	-College Undergraduates -Written knowledge Test -Two Studies	d =13, p < .05 d = .39, p < .05				

Table 1

• Ethical and Methodological Challenges

Evidence for Indirect Effect

- The Effect of Testing on Achievement: Meta-Analyses – 1910-2010 : Phelps Richard (In Press) – Estimates Unrelated to ME
 - N Studies = 170
 - High Stakes Testing d ~ .80 (Grade School etc)
- Only two studies by Robinson (1972) & Halpin et al (1982)

Indirect Effect d = .91					
Study	Context	Effect Size			
Robinson [12]	 -College Undergraduates -Written Knowledge Test -Test for a Grade vs. Test not counted in Grade 	d = .41, p < .01			
Halpin et al [18]	-College Undergrads -Written Knowledge Test -Study conditions test vs. no test	d = 1.41, p < .01			

Table 2

Evidence of Indirect Effect questions

- Cultural differences?
- Speculation on what would happen without accountability enforced by testing.....?
- Course-based tests vs. national licensure testing
- Ways to find out?
- Qualitative Studies?

Selection Effect - Pre-existing Summaries and Other Research

- Julian, E.R. Validity of the Medical College Admission Test for predicting medical school performance. *Academic Medicine*, 2005;80(10):910-917.
- Kreiter, C.D., Kreiter, Y. A validity generalization perspective on the ability of undergraduate GPA and the Medical College Admission Test to predict important outcomes. *Teaching and Learning in Medicine*, 2007;19(2):95-100.
- Donnon, T., Paolucci, E.O., Violato, C. The predictive validity of the MCAT for Medical School Performance and Medical Board Licensing Examinations: A meta-analysis of the published research. *Academic Medicine*, 2007;82(1):100-106.
- Reibnegger, G., Caluba, H.C., Ithaler, D., Manhal, S. Neges, H.N., Smolle, J. Progress of medical students after open admissions based on knowledge tests. *Medical Education*, 2010;44:205-214.

Julian Study

- 14 Medical Schools
- Med Schools Grades
- USMLE
- Range Restriction
- r = .63
- d = 1.63

Donnon et al Study

- Meta-analysis
- 23 Studies
- 1991 Version of MCAT
- USMLE
- Range Restriction
- r = .48
- d = 1.09

Kreiter et al. Study

- 29 Studies
- All versions MCAT
- Clinical Skills
- Written Tests
- Reliability Attenuation
- r = .47
- d = 1.07

A VALIDITY GENERALIZATION PERSPECTIVE

Outcome/Domain (w)ritten (p)Nonwritten/Performance	Time Since Adm.	Rel. of Outcome	N	MCAT [RR Corr]*	uGPA [RR Corr]*	Both [RR Corr]*	Ref. No.
Med Sch. GPA (w)	Yr 1	.70	12 Schools n > 1,200	.54 [.66]	.40 [.53]	.64 [.73]	18
Med. Sch. Grades (w)	Yr 1–2	.70	14 Schools $n > 1,400$.51 [.64]	.49 [.58]	.66 [.76]	19
Lit Review Pre-1990 Basic Sci. (w)	Yr 1–2	.70	18 Studies n > 3500			.48	17
Step 1 USMLE (w)	Yr. 2	.96	27,406	.53 [.70]	.37 [.49]	.55 [.72]	20
NBME I (w)	Yr 2	.90	1628	.45		.49	21
Lit Review Pre-1990 NBME I (w)	Yr 2	.90	16 Studies n > 4000	.58		.62	17
Step 1 USMLE (w)	Yr 2	.96	14 Schools $n > 1,400$.54 [.72]	.36 [.48]	.58 [.75]	19
Step 1 USMLE (w)	Yr. 2	.96	24,000	.57	.42	.60	11
MCCE Part 1 (w)	Yr 4	.95	597			.48	23
MCCE Part 2 (w)	Yr 4	.85	597			.34	23
OSCE (p)	Yr 4	.67	137	.30	.33	.36	6
Step 2 – USMLE (w)	Yr 4	.90	26,752	.49 [.60]	.33 [.44]	.52 [.63]	20
Lit Review Pre-1990 NBME II (w)	Yr 4	.90	8 Studies n > 1500			.52	17
NBME II (w)	Yr 4	.90	1628	.42		.46	21
LMCC Part I (w)	Yr 4	.90	75	.33	.33	.36	7
Certification Exams (w)	Yr 6	.90	857	.33	.33	.40	24
LMCC Part II—OSCE (p)	Yr 6	.70	44	.07	.25	.27	7
Lit Review Pre-1990 NBME III (w)	Yr 6	.90	2 Studies $n > 300$.35	17
NBME III (w)	Yr 6	.90	1188	.30		.34	21
Step 3—USMLE (w)	Yr 6–7	.90	25,170	.49 [.62]	.29 [.42]	.52 [.64]	20
Physician Disciplined t d = .33&.40 (p)	Yr 8–30	?	704	.30 {.15} [‡]	.25 .18t	.34	14

Table 1. Correlation of Outcomes With MCAT and uGPA

t - Effect size d = .33 and .40 converted to r and corrected for dichotomization (split = 90/10).

*Reported corrected for range restriction - Range restricted value was not used in meta-analysis.

	Written Tests of Knowledge and Clinical Reasoning				Non-Written Testing of Clinical Skills			
Attainment Level	r	r	\overline{r}_{yy}	\overline{r}_{c}	r	r	\overline{r}_{yy}	\overline{r}_c
Yr 1 & 2	.64 .66 .48 .55 .49 .62 .58 .60	.56	.85	.61				
Yr 3 & 4	.48 .34 .52 .46 .36	.52	.90	.58	.36	.36	.67	.44
Yr 5, 6 & 7	.40 .35 .34 .52	.51	.90	.54	.27	.27	.70	.33
Professional Practice Yrs > 7	?	?	?	?	.34		?	>.34

Table 2. VG Summary	Table Average Corrected	d Multiple (MCAT &	& uGPA) Correlatio	on Coefficients

Reibnegger et al. Study

- Before and After the Use of Selection tests
 - Austrian medical school before and after
 - ~23 % vs. ~82 % on-time completions
 - large decrease in dropouts
 - chi square (p <.0001)
 - -d = 1.15

(Reibnegger, G., Caluba, H.C., Ithaler, d., Manhal, S., Neges, H.N., Smolle, J. Progress of medical students after open admission or admission based on knowledge tests. *Medical Education*, 2010:44:205-214.)

Selection Effect						
d = 1.26						
Study	Context	Effect Size				
Donnon et al. [13]	-23 studies -Medical Students -Current Version of MCAT -Med School Performance -USMLE -Range Restrict. Correction	r = .43 preclinical r = .39 clerkship r = .66 USMLE 1 r = .43 USMLE 2 r = .48 USMLE 3 Mean $r = .48$ d = 1.09				
Kreiter & Kreiter [14]	-29 studies -Medical Students -Current/past Ver. MCAT -Undergrad GPA -Written Testing Outcomes -Clinical Skill PBA Outcomes -Post Grad Performance -Rel. Attenuation Correct	r = .61 yr1-2 written r = .58 yr3-4 written r = .54 yr5-7 written r = .44 yr3-4 clinical r = .33 yr5-7 clinical r = .34 yr7+ clinical Mean $r = .47$ d = 1.07				
Julian [15]	-14 Medical Schools -Med School Grades -USMLE -Range Restrict. Correction	r = .59 Med School Grd r = .70 USMLE 1 r = .60 USMLE 2 r = .62 USMLE 3 Mean $r = .63$ d = 1.63				
Reibnegger et al. [16]	-Medical School Before and After Test Selection -Successful completion of study	$\chi^2 = 631.44$, df = 1, p < .0001 Mean r = .49 d = 1.15				

Table 3

More Real World Evidence for Selection Effect

- Variance above cut score ~.9
 - Cut Score Study
 - Cut Score MCAT = 24 / Cut Score SciGPA = 3.0

(Kreiter, C.D. A commentary on the use of cut-scores to increase the emphasis on noncognitive variables in medical school admission – *Advances in Health Science Education*, 2006,12:315-319)

Preliminary Estimate

- Total Potential = ~.94 + ~.91 + ~1.24 = **3.09**
- Too good to be true?
- Take some effects for granted
 - Selection
 - Accountability
- Potential vs. Realized

• Does equation apply?

• Are Effects Logically additive and independent?

Total Contribution = (Direct Effect) + (Indirect Effect)+ (Selection Effect)

Research Questions and Answers

- Are educational assessments an effective learning tool in medical education? Yes
- Is research on educational assessment likely to promote medical education efficiency? Yes

Conclusions

- Strong evidence for testing's ability to promote learning
- Gains only partially realized in many medical education programs
- Continued improvement in testing methods likely to yield considerable gains in learning

Conclusions

- Likely source of inexpensive and effective innovation
- Some new opportunities presented by electronic delivery– (direct effect especially)

- Intelligent Tutoring with well timed assessment

• (Crowley, R.S., Medvedeva, O. An intelligent tutoring system for visual classification problem solving. *Artificial Intelligence in Medicine*. 2006;36(1):85-117.

- LabCAPS

• (Kreiter, C. et al. A report on the piloting of a novel computer-based medical case simulation for teaching and formative assessment if diagnostic laboratory testing *Medical Education Online, 2010;15*)

Questions - Skepticism

• Delusions of grandeur

Questions – Skepticism

- Evaluation role of findings
 - Remind Educators
 - Provide academic decision makers with hard evidence
- ? Question???
- ?
- ?
- ?